
Databases for Clock Data
W.J. Riley

Hamilton Technical Services
Beaufort, SC 29907 USA

 Introduction

While clock data can be stored simply as a sequence of phase values, significant advantages
accrue if it they entered into a database along with supporting information about the
measurement. Doing so requires some initial study, design and setup work, and somewhat
complicates the data acquisition process, but this effort pays significant dividends during
subsequent data access and analysis. This paper describes how a formal relational database can
be used to store and retrieve clock data, makes suggestions as to how the database is organized,
and illustrates the advantages of that approach, especially when a large amount of clock data
needs to be collected, stored, archived, retrieved and processed.

 Databases

A database is a structured means for storing data; a relational database is organized so that
different aspects of the data can be queried to extract information about it. Herein we discuss
databases based on an associated structured query language (SQL). Such databases are
comprised of a set of tables each having several columns containing a certain type of data along
with one or more indices that identify a particular row of data. Data is stored and accessed using
these indices within the overall structure (the schema) so that values can be stored and accessed
flexibly with minimal duplication. Database software implements its operation, usually in a
client-server manner, and supports database entries, queries, editing, archiving, backup,
maintenance and other such operations, while client software, using the SQL query language,
implements user interactions. The details of the database operations can be hidden within a
graphical user interface.

 Clock Data

The most essential clock measurement data is, of course, a series of phase readings, preferably
with associated timetags. Herein we assume that phase rather than frequency data are measured
and stored, that those values have units of seconds with sufficient range to avoid ambiguity and
sufficient resolution to show the significant variations. In most cases the phase data are equally-
spaced in time and they include MJD timetags that uniquely identify each datum.

 Supporting Data

A principal advantage of using a database is that supporting information can be stored along with
the measurement data. For example, database tables can store a list of the measurement channels
with entries such an active flag, a list of the clock sources with entries such as their S/N, and a
list of the measurements with entries such as a test description. These supporting data are
organized according to the data base schema in such a way as to allow them to be accessed by
queries according to their relationships.

1

Other information can be added via additional tables as needed for a particular application. For
example clock monitor and environmental readings can be recorded and correlated with the
phase data either within the same database or from another measuring system and its compatible
database.

 Database Usage

Because of these advantages of storing clock data together in a formal relational database, it is
much easier to utilize it via flexible queries to gain insights into both individual and mutual clock
performance and to observe their correlations with both internal dependencies and external
environmental sensitivities. One can more easily detect similarities in clock behavior and
compare their variations over time or against monitor records. The database also imposes
discipline on clock data labeling, formatting, storage and archiving that enhancing the
accessibility and value of those records. Once established, clock measurements become easier
and more consistent, and the resulting data becomes easier to access and utilize.

 SQL Databases

There are several popular SQL databases, both commercial and free, available on Windows,
Linux and other platforms. Among the former are Windows Access and SQL Server, and Oracle
Database. Among the later are PostgreSQL and MySQL. Herein we will mainly discuss
PostgreSQL [*].

 PostgreSQL

PostgreSQL is a freely-available, ANSI-compliant, well-documented open-source client-server
SQL relational database system of very high quality that is capable of handling the storage,
access and backup of large sets of clock data. For those not familiar with relational databases,
SQL and PostgreSQL, getting started can be rather intimidating. A good place to start is at the
PostgreSQL web site [1] and the many books describing it, particularly Reference [2]. Setting up
and using a PostgreSQL database is not a trivial task, but if large quantities of clock data need to
be stored and managed, it will pay off in the long run, particularly in ease of access to a portion
of a particular run for a certain clock, perhaps along with associated monitor readings.

The PostgreSQL database system includes the database server, command line and graphical
utilities, and interfaces for programming languages such as C and Python.

Downloading and installing PostgreSQL from the postgresql.org web site is relatively
straightforward. Creating the empty database is not particularly difficult if its schema is already
defined. Managing the database does require occasional effort regarding making backups and
performing software updates.

* PostgreSQL has some slight advantages regarding large systems, speed, complex queries, SQL compliance, security, programming language
support and robustness, but either is satisfactory for a clock database system.

2

 Database Server

The database server can be collocated on the same computer that controls the clock measuring
system or set up on a LAN-connected dedicated computer. The later is preferred for reasons of
robustness and access by multiple measuring systems and users. Attention should be paid to
issues like uninterruptable power and security, and redundant RAID hard drives could be used.
The PostgreSQL database server offers adequate security for most clock data requirements.
Measurement system, database server and analysis workstation computer clocks should be
closely synchronized. Multiple databases can be supported in the same cluster on the server.

There are rather frequent updates to the PostgreSQL database package, and it can be problematic
to keep the server, utilities and all related custom software up to date. The most important thing
seems to be that all such software use compatible versions.

 Database Schema

A key step in devising any relational database is designing the structure of its tables. Herein we
describe a fairly minimal schema for storing clock measurements that has been proven effective
for that purpose. In particular, as an example, it was simplified and adapted from a database
used with PicoPak clock measurement modules [3], which was in turn based on one used by the
Timing Solutions/Symmetricom/Microsemi MMS clock measurement system [4].

In designing a database schema one must think about how queries will be written to access the
contents efficiently and without duplication. Database tables typically include an index column
that serves as its primary access key; other columns can also be designated as keys and indexed
by the database to facilitate fast access.

An example of a PostgreSQL clock database schema is shown in Figure 1 in the form of a .sql
file that can be used to create the tables. The entries define the database tables, their column
names and data types, and whether they may not have null values.

The measurements table holds the clock data. It is the largest table by far even though it
contains the minimum amount of information needed (MJD, channel and phase values) to
uniquely hold a measurement.

The measurement_list table contains information about each measurement run.

The measurement_channel table has an entry for each measurement channel in the
system.

The clock_names table has information about each clock under test or reference source.

The notes table holds user-entered remarks regarding measurement events.

3

CREATE TABLE measurements
(
 mjd NUMERIC(12,6) NOT NULL,
 ch INTEGER NOT NULL,
 meas DOUBLE PRECISION NOT NULL
);

CREATE TABLE measurement_list
(
 meas_id INTEGER NOT NULL,
 ch INTEGER NOT NULL,
 sig_id INTEGER NOT NULL,
 ref_id INTEGER NOT NULL,
 frequency REAL NOT NULL,
 description CHARACTER VARYING(256),
 begin_mjd NUMERIC(12,6) NOT NULL,
 end_mjd NUMERIC(12,6),
 tau REAL NOT NULL
);

CREATE TABLE measurement_channels
(
 ch INTEGER NOT NULL,
 active BOOLEAN
);

CREATE TABLE clock_names
(
 clock_name CHARACTER VARYING(256),
 clock_id INTEGER NOT NULL,
 clock_type CHARACTER VARYING(256),
 description CHARACTER VARYING(256)
);

CREATE TABLE notes (
 meas_id integer NOT NULL,
 mjd numeric(12,6) NOT NULL,
 note character varying(255)
);

Figure 1. Example of a PostgreSQL Database Schema for Clock Data

In this database schema, ch is the measurement system channel number, which could also be
the S/N of a measurement module. The clock measurements data table contains that number,
along with the meas value and its mdj timetag. The measurement_list table has an
entry for each measurement run with its serial meas_id number, the channel, sig_id for the
signal source and ref_id for the reference source, the nominal signal frequency, a
description of the run, its data tau, and its start and end times, begin_mjd and

4

end_mjd. The measurement_channels table contains the channel ch and a flag to
indicate whether it is currently active. Additional items can be added to this table depending
on the measurement system hardware. The clock_names table contains a list of every clock
that has been connected to the system, with its serial clock_id, and its clock_name,
clock_type and description. . A user can make an entry into the notes table during a
measurement to indicate and timetag an event.

No default values are included, there are no explicit SERIAL items, nor are there any UNIQUE
or PRIMARY KEY constraints, so it is up to the user and/or user interface to enforce those,
particularly the unique meas_id, and ch numbers.

Only the essential columns have NOT NULL constraints, which are enforced by the user
interface. One can use the measurement table description and the clock_names
table clock_name, clock_type and description to help find the desired clock and
measurement during database access. The user interface will always enter values for active in
the measurement_modules table. The measurement data (meas column of the
measurements table) is formatted as a DOUBLE PRECISION floating point number, which
holds the phase data in units of seconds as are the frequency and tau columns of the
measurement_list table. This is the minimal database structure. The following columns
serve as the primary key for their respective tables; these are constrained as PRIMARY KEYs
and indices are added for them to speed up database access.

Table I Example PostgreSQL Clock Database Keys

Database Table Primary Key(s)
measurements ch, mjd
measurements_list meas_id
measurement_channels ch
clock_names clock_id
notes meas_id, mjd

A 1-line listing of this example’s clock database tables is shown in Figure 2.

5

 List of relations
 Schema | Name | Type | Owner
--------+---------------------+-------+-------
 public | clock_names | table | bill
 public | measurement_list | table | bill
 public | measurement_channels| table | bill
 public | measurements | table | bill
 public | notes | table | bill

clock_name | clock_id | clock_type | description
-----------+----------+------------+----------------------------
 Rb1 | 1 | LPRO | Efratom LPRO-101 S/N 29932

meas_id | ch | sig_id | ref_id | frequency | description | begin_mjd | end_mjd | tau
---------+---+--------+--------+-----------+------------------+--------------+--------------+-----
 18 | 4 | 12 | 1 | 1e+07 | GPSDO Comparison | 57531.552089 | 57531.567899 | 20

sn | com | active | computer | type
----+-----+--------+----------+---------
105 | 7 | f | LAB | PicoPak

 mjd | sn | meas
--------------+-----+----------------------
 57527.791612 | 103 | 6.96539878845214e-11

meas_id | mjd | note
--------+--------------+---------
 105 | 57597.817815 | A/C on

Figure 2. Listing of the Example PostgreSQL Clock Database Tables

 Database Processes

One must devise software processes following the logic of the database schema to store and
recall all desired items of information, utilizing the database schema keys to compose a sequence
of commands and queries. Note that these queries are for illustrative purposes only and, while
they resemble actual C or Python code, they should not be taken literally.

System Setup

Enter or append inactive measurement channels (or modules) into the system by
executing the following command:

INSERT INTO measurement_channels(ch, active)
VALUES(%s, %s), (channel, FALSE)

Clock Entry

Determine the next clock_id for the clock_names table with the command:

SELECT clock_id FROM clock_names ORDER BY clock_id DESC
LIMIT 1

Enter the corresponding clock_name, clock_type and description into the
clock_names table with the command:

INSERT INTO clock_names(clock_name, clock_type,
description) VALUES(%s, %s, %s), (name, type, desc)

6

Measurement Run Start

Determine the next meas_id for the measurements_list table with the command:

SELECT meas_id FROM measurement_list ORDER BY meas_id DESC
LIMIT 1

Enter the measurement parameters into the measurements_list table with the
command:

INSERT INTO measurement_list(meas_id, ch, sig_id,
ref_id,frequency, description, begin_mjd, tau) VALUES(%s,
%s, %s, %s, %s, %s, %s, %s), (meas, chan, sig, ref, hz,
desc, mjd, tau)

Set the corresponding measurement_channels active flag to TRUE with the command:

UPDATE measurement_channels SET active=TRUE WHERE ch=%s,
(chan)

Note Entry

Enter a note for a certain measurement run into the notes table with the command:

INSERT INTO notes(meas_id, mjd, note) VALUES(%s, %s,
%s), (meas, mjd, text)

Measurement Run End

Update the measurements_list table for a certain measurement run by entering the
mjd_end with the command:

UPDATE measurement_list SET end_mjd=%s WHERE meas_id=%s,
(mjd, meas)

Set the corresponding measurement_channels active flag to FALSE with the command:

UPDATE measurement_channels SET active=FALSE WHERE ch=%s,
(chan)

Clock Data Access

Obtain the clock phase data for a particular channel ch and date mjd by executing the
following command over the desired date range:

SELECT meas FROM measurements WHERE ch=%s AND mjd=%s,
(chan, mjd)

7

 Database Storage

Data storage is best accomplished by embedding it into the same user interface that controls and
manages the clock measuring system.

 Database Access Tools

Database access can be accomplished manually, with PostgreSQL or 3 rd-party command line or
graphical tools, or (preferably) with a custom user interface. Manual database access can use the
PostgreSQL psql program and SQL commands or the pgAdmin GUI.

A database server, perhaps Linux based using Apache, can employ a php script [5] with the
PostgreSQL support module, the GD graphics package and the PHPlot plotting package [6] to
implement a user interface to the database [7]. Those tools are all well-supported and free.

 Clock Database Strategies

The most straightforward situation is a custom in-house clock measuring system, perhaps using
National Instruments Lab Windows/CVI [8]. In that case, one can embed the data storage within
the system controller user interface, set up a LAN-connected database server, and create the
desired access means for analyst workstations.

If the clock measuring system is an in-house product, the same elements can be made part of it,
with customer support for its commissioning and operation.

If the measuring system is a procured product with its own database support, one can simply use
it as-is, modify the database schema as required, and/or write a custom user interface to satisfy
specific needs.

If, however, the measuring system is a procured product without database support, adding that
will be more difficult. A possible approach is to write custom software to read the products
native data file and store it into a custom database supported by a custom user interface.

 Supporting Applications

A clock measurement and analysis system benefits from a complete suite of supporting
applications:

1. A user interface to control the clock measuring system itself that allows clocks to be entered,
measurements configured and started, data to be collected and entered into the database, and
the measurement run to be ended.

2. A similar user interface, either integrated or separate, to collect monitor data.
3. A user interface, either PC or web based (or both), to monitor the ongoing measurements.
4. A user interface for flexibly extracting previous clock and monitor data from the database.

Provisions should be available to access clock and monitor data for a particular clock,
reference and measurement over all or a portion of the run. Provisions should be available
for plotting these data and writing them to a file for further analysis.

5. General purpose applications for analysis and plotting.
6. Specialized frequency stability analysis applications.
7. Utilities for database backup and maintenance.

8

A example of a Windows graphical user interface for a PostgreSQL clock database is shown in
Figure 3 [3]. It supports connecting to the database, selecting a signal or reference source, displaying
a list of the associated measurement runs, selecting one of those, extracting data and plotting from it
over a particular date range, and writing it to to a Stable32-compatible data file while applying an
optional averaging factor. The extracted data can then be examined with Windows Notebook and/or
analyzed with Stable32.

Figure 3. PicoPak Database Interface Main Screen

Similar Windows, Linux and National Instruments workstation and server interface applications
can be written to support clock measurement system operation, database clock entry, clock and
monitor data storage and retrieval, archiving, backup, etc. A suite of such custom programs
greatly facilitates these activities. They are relatively straightforward to write because
underlying tools are available for the database and network processes, as well as for plotting and
other user interface elements, particularly with high-level scripting languages like Python and
php.

A web-based monitor for a PostgreSQL database in shown in Figure 4 [9]. It is hosted on the
same Linux computer as the database server, and can display a plot of the phase or frequency
data for a selected PicoPak module during a measurement run.

9

Phase Data Frequency Data

Figure 4. PicoPak Database Web Monitor

Another example of a database interface application is shown in Figure 5. The screen displays a
list of the measurement records for the selected reference and measurement clocks, and can read
the data for the selected clocks for a selected date range.

Figure 5. MMS Clock Database Interface Main Screen

10

The interface application of Figure 6 allows clocks and measurements to be selected and
supports downloading their phase or converted fractional frequency data along with one selected
channel of monitor data.

Figure 6. Clock and Monitor Database Interface Main Screen

Figure 7 shows a Windows
interface for the pg_dump utility
to back up a PostgreSQL database.

Figure 7. Database Backup Interface Screen

11

The application shown in Figure
8archives and then purges a portion
of a PostgreSQL database so as to
keep the original one at a more
manageable size.

Figure 8. PostgreSQL Database Archiver Main Screen

 Database Skills

Clock database usage is largely made transparent by user interface software during ordinary
operations, and thereby makes measurements and analysis easier by consolidating data storage
and retrieval.

Clock database development, however, may require that local technologists (clock designers, test
engineers, etc.) learn some new skills. The clock and monitor measurement systems will require
user interfaces that incorporate an appropriate database server, schema, and control software.
The analysis systems will require user interfaces to flexibly access the clock and monitor data.
These software tools can either be bundled with a purchased measurement system, or developed
by an in-house programmer or outside consultant. If custom software is required, it is critical
that it be devised with database and clock analysis knowledge as well as operating system,
networking and programming skills. In any case, because some recurring effort will be needed
for administration, maintenance, updates, backups and troubleshooting, local IT personnel and/or
test engineers will need some intermediate level of database proficiency. Because long-term
usage of the system is likely, thorough documentation is critical, especially to support future
software updates. Computer hardware and operating systems evolve quickly as a measuring
system is designed, built, commissioned, receives updates and then finally requires legacy
support as its database is used to find and retrieve old clock data.

12

 Database Cost

Although the core database and programming software tools may be practically free, and the
necessary computer hardware cost modest, conceiving and commissioning a custom clock
database system needs considerable test engineering and/or programming effort. Depending on
the scope and complexity, that work can require several full time man months during initial
implementation followed by documentation, training, updates and maintenance support. Those
costs have to be weighed against its necessity and associated productivity gains over the life of
the system.

 Conclusions

Inclusion of a database into a clock measurement and analysis system provides many benefits,
especially for a multichannel system where many clocks are involved over a long period of time.
These benefits are particularly evident when data must be extracted for selected clocks and
references over particular dates and correlated with corresponding monitor and environmental
readings and measurement notes. It is arguably the best way to share such data locally over a
LAN or even widely via the internet where a database web server can make clock data available
to any device with a web browser.

While it would be nice to establish a standard relational database type and schema for all clock
data, that is probably not feasible given the many database choices, clock measurement systems
and computer hosts. Nevertheless, because these elements share many common attributes, it is
reasonable to assume that experience gained with one configuration can be applied to others.
Knowledge about and use of database techniques is therefore recommended for all those who
work with clock data. Not all clock data belongs in a formal relational database, but a strong
case can be made for establishing one for any permanent multichannel clock measuring system.

 References

1. See the PostgreSQL web site.
2. N. Matthew and R. Stones, Beginning Databases with PostgreSQL, ISBN 1-59059-478-

9, Apress, 2005.
3. W.J. Riley, “A PostgreSQL Database for the PicoPak Clock Measurement Module”,

Hamilton Technical Services, April 2015.
4. Data Sheet, Multi-Channel Measurement System, Microsemi, Inc., January 2016.
5. PHP web site.
6. PHPlot web site.
7. W.J. Riley, “A Web-Based PicoPak Monitor”, Hamilton Technical Services, September

2016.
8. National Instruments Lab Windows/CVI.
9. W.J. Riley, “PicoPak Software Overview”, Hamilton Technical Services, August 2016.

File: Databases for Clock Data.doc
W.J. Riley

Hamilton Technical Services
March 5, 2019

13

http://www.postgresql.org/about
http://www.php.net/
http://www.wriley.com/PicoPak%20Software%20Overview.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjcldO2hNzgAhUFuVkKHZDqCioQFjAAegQIABAC&url=http%3A%2F%2Fwww.ni.com%2Flwcvi%2F&usg=AOvVaw2mOjcEN4_pSLhq4d_C00yF
http://www.wriley.com/A%20Web-Based%20PicoPak%20Monitor.pdf
http://phplot.org/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjR0PSdgNzgAhUHq1kKHepOAy8QFjAAegQIARAC&url=https%3A%2F%2Fwww.microsemi.com%2Fdocument-portal%2Fdoc_download%2F133380-multi-channel-measurement-system-mms-datasheet&usg=AOvVaw2QcWSxA
http://www.wriley.com/A%20PostgreSQL%20Database%20for%20the%20PicoPak%20Clock%20Measurement%20Module.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwitx_XtgNzgAhWFmlkKHY_9AjMQFjABegQIIhAB&url=https%3A%2F%2Fwww.apress.com%2Fus%2Fbook%2F9781590594780&usg=AOvVaw2poGpLOYG6YyMTZ_jO7M9N

